
Introduction to
Reversing and Pwning

David Weinman

whoami - @h3ll_d0g

● security research engineer at synack, TESC alum

● member of the opentoall ctf team

● hippie millennial loves the pacific northwest

● snowboarder, skateboarder, metal head

i’m still learning

why pwn or reverse?

● $

○ amount? not all bugs are equal, not all bounties focus on

the same kinds of targets

■ synack has a mobile app bounty - can use related skills

■ android bugs <= $4k (google)

■ in 2015, average android bug payout was $2.2k (google)

● fun! pwn challenges can be super rewarding to solve

agenda

● detailed intro to x86 assembly

● detailed look at runtime memory layouts

● overview of common bug classes

● tooling discussion

● glance at mitigations

● demos along the way

takeaway

● how a program is compiled and run

● common bug classes/exploit mitigations

● ability to decompile c programs

● techniques for binary analysis

● exposure to a pwn challenge

Demo time

X86 Registers and Instructions

X86 / peek inside a CPU

● x86 arch register: 32 bit memory chunk

● can refer to 16 bit/8 bit subsets

X86 / assembly language

● architecture specific - converted to machine code by assembler

● there are two syntax flavors of x86 assembly, intel and at&t

● intel syntax: operand destination, source

mov eax, 5

Runtime

runtime / heap vs stack

● heap is for allocated data usually of variable size,

accessible to threads and shared libraries (malloc/free)

● stack is for local variables/arguments, environment variables

and function call metadata
low addresses

high addresses

.text (code)

.rodata

.data

stack

heap

elf memory layout ➤

runtime / stack frame layout

● caller pushes args and eip onto the stack

● callee pushes ebp and local vars onto the stack

low addrs

high addrs

void function(int arg1, int arg2) {
 int var1;
 int var2;
}
void main() {
 function(1, 2);
}

Crackme challenge
shall we play a game?

Bugs

bug classes / stack buffer overflow

low addrs

high addrs

int main() {

 int i;

 char buf[10];

 i = 0xd3ad;

 /* out of bounds local variable data can

 overwrite other vars/function metadata */

 fgets(buf, 0x10, stdin);

 printf("k you wrote %s\nnow ... ", buf);

 fflush(stdout);

 if (0 == (0x1337 ^ i)) {

 runme();

 } else {

 puts("eat my shorts!\n");

 }

}

bug classes / format string
void main() {
 int i = 0;
 char buf[64];
 unsigned int iptr = (unsigned int) &i;
 disable_buffering(stdout);
 /* printf takes a variable number of arguments
 how is the variable known at runtime? */
 printf("format string playground, enter buf: ");
 fgets(buf, 64, stdin);
 printf("check out the buf you entered: ");
 printf(buf);
 if (i) {
 printf("congratz u win!\n");
 system("/bin/bash");
 }
}

bug classes / format string

bug classes / wild copy
● the size of a copy is under limited attacker control

● the copy is large enough to cause a fault prior to completing
void main() {
 struct message *msg;
 disable_buffering(stdout);
 msg = malloc(sizeof(struct message));
 msg->len = 24;
 msg->result = lose;
 while (msg->len >= 24) {
 printf("What is your length? ");
 scanf("%d", &msg->len);
 getc(stdin); // eat up newline
 }
 printf("OK, what is your buf? ");
 read(0, msg->buf, msg->len);
 msg->result();
 free(msg);
}

struct message {
 char buf[24];
 int len;
 void (* result)();
};

void lose() {
 puts("loser\n");
}

void win() {
 system("/bin/bash");
}

bug classes / use after free
● malloc chunk is freed but pointer to the chunk is reused

● if sizes are similar malloc may reuse chunks after frees

#define SZ1 20
#define SZ2 15
void main() {
 unsigned int *ptr;
 printf("mallocing a chunk\n");
 ptr = malloc(SZ1);
 printf("malloced chunk at: 0x%08x\n", (unsigned int)ptr);
 printf("freeing chunk\n");
 free(ptr);
 printf("mallocing chunk again\n");
 ptr = malloc(SZ2);
 printf("malloced chunk at: 0x%08x\n", (unsigned int)ptr);
 free(ptr);
}

Tools of the trade

pwn tools / static & dynamic

● static analysis - looking at the binary, its associated shared

libraries, anything to do with reversing the binary on disk

● dynamic analysis - debugging the process, memory dumping,

anything to do with reversing the binary at runtime

ida ➤

gdb-voltron ➤

pwn tools / binary hacking apis

● pwntools (github.com/Gallopsled/pwntools)

pwn tools / checksec.sh

● reveals whether mitigations are on/off

Wat do

wat do / shall we play one last game?

● # prereqs - virtualbox & vagrant

● git clone https://github.com/clampz/pwnvm

● vagrant up --provider=virtualbox

● vagrant ssh

● cd challs/intro-examples

● # pwn bins ~/challs/

wat do / bypassing mitigations

Pwn challenge

pwn3d

wat do / resources to learn more

● youtube.com/user/GynvaelEN/videos

● liveoverflow.com

● github.com/RPISEC/MBE

● challenges.re

● pwnable.tw

● a bug hunter’s diary

gr33tz

● synack for sponsoring this talk

● all students involved with RPISEC MBE, especially d00m

● OpenToAll grazfather & uafio for feedback and helping me

● members of cRUcible for inspiration, support, CTFs

● mike_pizza & rweiss for sparking my interest in pwning

● Miguel Gordo Garcia, Robert Musser & inkrypto for testing

challs and slides

● Richo Butts for listening to my talk so much i lost count

● BSides crew for arranging everything

Questions?

