
Heap Analysis and
Exploitation

 Evergreen Hacker Club

Stack vs. Heap Structures:
Overview

Remember the stack:
● A data structure used at

runtime to keep track of
arguments passed to functions,
local variables & return
addresses.

● Memory allocations are known
at compile time.

● Allocations and deallocations
handled automatically.

Now, introducing the heap:
● Once again, a runtime data

structure, but used to keep track of
structs, objects, big buffers,
larger things in general.

● Memory allocations are dynamic and
not fixed, only known during
runtime.

● Allocations and deallocations are
handled by the programmer.

Heap grows from lower to
higher memory addresses.

While the stack grows from
higher to lower memory
addresses.

Stack vs. Heap Structures:
Segment growth

The two functions that make up the foundation of heap manipulation are:

void *malloc(size_t size);

When malloc() is called for the first time in a thread it will:
● allocate a reasonable amount of memory.
● create a heap segment or equivalent.
● return to the caller a pointer to a memory region (chunk)

of size_t size

If it is not the first time it will:
● simply return a pointer to a region (chunk) within the

current heap segment (or equivalent) of suitable size.

 void free(void *ptr);
Sets a memory region previously returned via malloc() as not in use.

Free the Malloc

struct malloc_chunk {

INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */

INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */

struct malloc_chunk* fd; /* double links -- used only if free. */

struct malloc_chunk* bk;

/* Only used for large blocks: pointer to next larger size. */

struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */

struct malloc_chunk* bk_nextsize;

};

Chunks are the smallest unit of memory administration in dynamic allocation.

Their implementation as per glibc2.19:

What is a “Chunk”?

Chunks of malloc()
When free’d or malloc’d, the internal structure of a chunk will change accordingly.
● prev_size is only initialized if the chunk is free.
● When a chunk is freed, they are inserted into a linked-list of free chunks.

○ fd and bk are then initialized
○ Then linked to a particular chunk to others within the same list.

The 3 least-significant-bits (LSB) represent the chunk flags:
● PREV_INUSE (P) bit set when previous chunk is allocated
● IS_MMAPPED (M) bit set when chunk is being mmapp’d
● NON_MAIN_ARENA (N) bit set when chunk does not belong to heap segment

Chunk States

The heap must be created at runtime by
some algorithm. The various
implementations of this algorithm are
called allocators & there are quite a
few:

● dlmalloc
● ptmalloc
● tcmalloc
● jemalloc
● nedmalloc
● Hoard

The allocators allocate memory
dynamically and administrate that
memory.

Heaps go way deep & much can depend on
implementation! (Arenas, binning, chunk
coalescing, fragmentation…)

In this demonstration we will be mainly
concerned with glibc 2.19 which uses a
heap implementation based on ptmalloc2.

It is said to be very fast, with low
fragmentation, & thread-safe.

On Allocator Implementations

Heap Exploitation: Overflows

Overflows on the heap are not so much
different than the classical stack smash.

Simply, one corrupts data by overflowing
from one chunk into another (or
what-have-you).

Lots of interesting things are stored on the
stack, functions pointers as struct fields
are a good example.

struct toystr {
 void (* message)(char *);
 char buffer[20];
}

Anything that handles data you’ve corrupted
is a viable attack surface.

Heap Exploitation: UAF

Use-After-Free (a.k.a: UAF) is a class of
vulnerability that occurs when some memory
is referenced after it has been freed which
can cause a program to crash, use unexpect
values, or execute code.

These leftover references are often called
“dangling pointers”.

This kind of thing usually happens on the
heap and within complex programs such as web
browsers. Check out CVE-2016-1961 in
firefox, for example.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-1961

Heap Exploitation: UAF

po
in
te
r

Heap Exploitation: UAF

da
ng
li
ng

po
in
te
r

Two free()’d
chunks, leaving a
dangling pointer.

Heap Exploitation: UAF

newly malloc()’d
chunk overwriting
those just free’d

Heap Exploitation: UAF

Usually, in order to exploit a
use-after-free vulnerability, you’ll
have to malloc a different structure
over the one you just freed.

Say, for example we have:

struct toystr {
 void (* message)(char *);
 char buffer[20];
}

struct person {
 int favorite_number;
 int age;
 char name[16];
}

